MATEMÁTICAS II ÁLGEBRA **PROBLEMA 31**

JULIO 2017 A

Problema A.1. Sean A y B dos matrices cuadradas de orden 3 tales que $A^2 = -A - I$ y $2B^3 = B$, siendo

$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 la matriz identidad. Obtener razonadamente, escribiendo todos los pasos del

razonamiento utilizado:

a) La justificación de que la matriz A es invertible y el cálculo de la matriz A^3 en función de A y de I.

(2 puntos) (2 puntos)

b) Los valores posibles del determinante de B.

(3 puntos)

- c) El valor del determinante de la matriz B^2 , sabiendo que la matriz B tiene inversa.
- (3 puntos)

$$A$$
) $A^2 - A - I$

$$\Rightarrow T = -A - A^2$$

$$I = A(-I-A)$$
 $\Rightarrow A^{-1} = -I-A$ (A es invertible)

$$A^{3} = ?$$
 $A^{3} = A \cdot A^{2} = A \cdot (-A - I) = -A^{2} - A = -(-A - I) - A = A + I - A = I$

$$\rightarrow |2B^3| = |B| \rightarrow 2.2.2.|B^3| = |B| \rightarrow 8|B|^3 = |B|$$

→
$$8|B|^{3}-|B|=0$$
 → $|B|(8|B|^{2}-1)=0$
 $|B|=0$ $|B|=\pm\sqrt{\frac{1}{8}}$

(c)
$$|B^2| = |B|^2 = (\pm \sqrt{8})^2 = \frac{1}{8}$$

 $|B| \pm 0$